מצפה הכוכבים כנרת
  • ספר לימוד
    • פרק א' – כיצד פועל המדע?
    • פרק ב' – אסטרונומיה קדומה
    • פרק ג' – המהפכה הקופרניקנית
    • פרק ד' – אנרגיה וחומר ביקום
    • פרק ה' – מערכת ארץ-ירח
    • פרק ו' – פלנטות ארציות
    • פרק ז' – פלנטות ענקיות וירחיהן
    • פרק ח' – גופים במרחב הפלנטרי
    • פרק ט' – כיצד נוצרה המערכת הפלנטרית?
    • פרק י' – גלוי קרינה מהחלל
    • פרק י"א – השמש – הכוכב שלנו
    • פרק י"ב – תכונותיהם של כוכבים
    • פרק י"ג – הולדתם ומותם של כוכבים
    • פרק י"ד – שביל החלב
    • פרק ט"ו – גלקסיות
    • פרק ט"ז – היקום המתפשט
    • פרק י"ז – קוסמולוגיה
    • פרק י"ח – החיים בכדור הארץ
    • פרק י"ט – חיים ביקום
  • הדמיות
  • עבודות זעירות
    • מהם מטאוריטים?
    • מה הם כתמי שמש?
    • מה קורה לחלקי השמש כאשר הם מתפרצים מהשמש ומה תוצאת נפילתם?
    • מדוע כוכב הלכת אורנוס מסתחרר בשכיבה על הצד?
    • מדוע צבעו של מאדים אדום?
    • מדוע כוכב הלכת אורנוס מסתחרר בשכיבה על הצד?
    • למה נעלמו המים במאדים?
    • איך כוכב הלכת צדק נוצר, הגיע למערכת השמש והחל להסתובב סביבה במסלול הקבוע?
    • כיצד נוצרו טבעותיו של שבתאי (saturn)?
  • פעילויות תלמידים
    • בית ספר יסודי
    • חטיבת ביניים
    • בית ספר תיכון
  • מצפה כוכבים רובוטי
  • פרויקטים
    • מייזמים שמתקיימים כעת
    • מייזמים שהסתיימו
    • תערוכת טילאות
  • צור קשר
  • ראשי
  • ספר לימוד
  • הדמיות באסטרונומיה
  • עבודות זעירות
  • אסטרוטופ
  • פעילויות תלמידים
  • מצפה כוכבים רובוטי
  • פרויקטים
  • צור קשר
מצפה הכוכבים כנרת
  • ספר לימוד
    • פרק א' – כיצד פועל המדע?
    • פרק ב' – אסטרונומיה קדומה
    • פרק ג' – המהפכה הקופרניקנית
    • פרק ד' – אנרגיה וחומר ביקום
    • פרק ה' – מערכת ארץ-ירח
    • פרק ו' – פלנטות ארציות
    • פרק ז' – פלנטות ענקיות וירחיהן
    • פרק ח' – גופים במרחב הפלנטרי
    • פרק ט' – כיצד נוצרה המערכת הפלנטרית?
    • פרק י' – גלוי קרינה מהחלל
    • פרק י"א – השמש – הכוכב שלנו
    • פרק י"ב – תכונותיהם של כוכבים
    • פרק י"ג – הולדתם ומותם של כוכבים
    • פרק י"ד – שביל החלב
    • פרק ט"ו – גלקסיות
    • פרק ט"ז – היקום המתפשט
    • פרק י"ז – קוסמולוגיה
    • פרק י"ח – החיים בכדור הארץ
    • פרק י"ט – חיים ביקום
  • הדמיות
  • עבודות זעירות
    • מהם מטאוריטים?
    • מה הם כתמי שמש?
    • מה קורה לחלקי השמש כאשר הם מתפרצים מהשמש ומה תוצאת נפילתם?
    • מדוע כוכב הלכת אורנוס מסתחרר בשכיבה על הצד?
    • מדוע צבעו של מאדים אדום?
    • מדוע כוכב הלכת אורנוס מסתחרר בשכיבה על הצד?
    • למה נעלמו המים במאדים?
    • איך כוכב הלכת צדק נוצר, הגיע למערכת השמש והחל להסתובב סביבה במסלול הקבוע?
    • כיצד נוצרו טבעותיו של שבתאי (saturn)?
  • פעילויות תלמידים
    • בית ספר יסודי
    • חטיבת ביניים
    • בית ספר תיכון
  • מצפה כוכבים רובוטי
  • פרויקטים
    • מייזמים שמתקיימים כעת
    • מייזמים שהסתיימו
    • תערוכת טילאות
  • צור קשר
  • ראשי
  • ספר לימוד
  • הדמיות באסטרונומיה
  • עבודות זעירות
  • אסטרוטופ
  • פעילויות תלמידים
  • מצפה כוכבים רובוטי
  • פרויקטים
  • צור קשר

4.12 מצבי צבירה בחומר

טמפרטורה מאפשרת למדוד את האנרגיה הקינטית הממוצעת של מולקולות החומר – או את תנועתן המיקרוסקופית. לכמות האנרגיה או למידת התנועה בחומר יש השפעות משמעותיות על מבנה החומר. מה קובע האם החומר נמצא במצב מוצק, נוזל או גז?

שלושת מצבי הצבירה של החומר מאופיינים במהירות התנועה של החלקיקים המרכיבים את החומר ובקשרים שביניהם.
באדיבות וויקיפדיה

להבנת הקשר בין  צורות החומר ביקום לבין הטמפרטורה חשיבות מעשית רבה. למרות שהמודל שנציג מקטין במידת מה את השפעות הלחץ ומשתנים אחרים, הרי הוא שימושי מאוד בהבנת צורות החומר. בטמפרטורות נמוכות ביותר, אנו מוצאים כי החומר נמצא במצב "קפוא", הוא קיים כמוצק. במצב צבירה זה החלקיקים בקושי נעים ומודבקים זה לזה במבנה נוקשה. הדבר נכון, בין אם החומר מורכב מאטומים (לדוגמה, פחמן) או מולקולות (כמו זכוכית), או תרכובת כימית (כמו מלט). הקשרים נוצרים על ידי שיתוף אלקטרונים בין גרעינים. הגרעינים מורכבים מפרוטונים וניטרונים. למוצקים שתי צורות כלליות. הם יכולים להיות אמורפיים, כמו זכוכית או פלסטיק. לאטומים במוצקים אמורפיים אין תבנית ברורה אבל הם מעוותים במבנה קבוע. מוצקים יכולים גם להיות גבישיים, כמו חול או מלח. האטומים בחומר גבישי נמצאים בדפוסים החוזרים על עצמם שוב ושוב בחומר המוצק. לפעמים המבנים הרגילים ממשיכים לגדול לממדים גדולים הרבה יותר מאשר גודל האטום. עד כדי כך שניתן לראות גבישים של מלח בעזרת זכוכית מגדלת. רוב המסה של כדור הארץ, נמצאת במצב מוצק גבישי. הגבישים היוצרים סלעים הם דוגמא טובה לאטומים המחוברים יחד בדפוס סריגי.

רצוי לזכור שהטמפרטורה היא דרך למדידת קצב התנועות של אטומים. ככל שמהירותם הממוצעת גבוהה יותר, כך הטמפרטורה של החומר גבוהה יותר, ולהיפך. בטמפרטורה של האפס המוחלט, או  00K, החלקיקים האטומיים יהיו כמעט חסרי תנועה (פרט לשרידים זעירים שמנבאת התורה הקוואנטית). אטומים במוצק מוחזקים במקומם כך שהם אינם יכולים לנוע בחופשיות. אבל כאשר אנו מעלים את הטמפרטורה של מוצק, האטומים ירטטו במהירות הולכת וגדילה.

דיאגרמת מצבי הצבירה המתארת את הקשר של שלושת מצבי הצבירה של המים. לכל חומר ניתן לבנות דיאגרמת מצבי צבירה המתארת את התנאים שבהם חומר עובר ממצב צבירה אחד לשני בהשפעת שינויים של הטמפרטורה והלחץ.
באדיבות וויקיפדיה

בטמפרטורת החדר, סביב  3000K, אטומים בחומר טיפוסי רוטטים במהירות של כ ½ קילומטר לשנייה. אנרגיה זו מאפשרת לרבים מן האטומים להשתחרר מן הסריג אליו היו צמודים בטמפרטורות נמוכות. כאשר תהליך זה מתרחש, חומרים רבים מותכים לנוזל. במצב נוזלי האטומים עדיין בקשר הדוק, אך שרשראות או קבוצות של אטומים עשויות לנוע זו לעומת זו והמבנה הסריגי נהרס. כך מקבל הנוזל את צורת המכל שבו הוא נתון. האוקיינוסים של כדור הארץ נמצאים במצב נוזלי.

בטמפרטורות סביב 400-6000 קלווין, מהירות תנועת האטומים מגיעה לכדי כמה קילומטרים לשנייה. שרשראות האטומים מתפרקות, ולאטומים יש די אנרגיה כדי לעזוב את פני הנוזל ולעבור למצב גזי. אטומים בודדים או מולקולות בגז נעים ללא קשר עם מולקולות אחרות. ישנם רווחים גדולים בין החלקיקים, ואינטראקציה מתרחשת לעתים רחוקות יחסית, באמצעות התנגשויות אלימות. הצפיפות של רוב המוצקים והנוזלים דומות; אך הצפיפות של גזים נמוכה בכמה סדרי גודל. האוויר שאנו נושמים נמצא במצב גזי.

רוב החומרים משנים מצב צבירה ממוצק לנוזל או מנוזל לגז בטמפרטורות שונות מאוד. המעברים תלויים בקשרים הכימיים שבין מרכיבי החומר. בטמפרטורת החדר, רק האטומים או המולקולות הקלים ביותר יכולים להיות במצב גזי. מולקולות כבדות או מורכבות נמצאות תמיד במצב נוזלי או מוצק. מצב הצבירה של אטומים או מולקולות תלוי רק בכמות אנרגית החום שהם מכילים. כאשר מעלים את הטמפרטורה של מוצק כמו ברזל, ניתן להתיך אותו (ב- 0K1813) ולאחר מכן אפילו להביאו לכדי רתיחה כך שיהפוך לגז (ב- 30330K). מצד שני, אם נוריד את הטמפרטורה של גז, ניתן להפוך אותו לנוזל ואפילו למוצק. חנקן גזי באוויר שאתם נושמים, הופך נוזל ב-  770K (או  -1960C- ) ומתמצק בטמפרטורה נמוכה עוד יותר   540K (או – -2190C ). רוב היקום נמצא בטמפרטורות הרבה יותר גבוהות או הרבה יותר נמוכות ממה שאנחנו רגילים.

השפעת הטמפרטורה על השינויים במצב הצבירה של החומר.
קרור החומר מוביל למעבר מגז לנוזל ולמוצק. החימום מוביל ממצב מוצק למצב נוזלי גזי ואפילו פלזמה.
באדיבות וויקיפדיה

באנלוגיה למוצקים, נוזלים, וגזים ניתן לדמיין אנשים באולם התעמלות. אם אנשים רבים עומדים כולם יחד במקומם ועושים תרגילים, הם דומים לאטומים במצב מוצק, הם רוטטים אבל לא זזים ממקומם. אם האנשים מסודרים בשורות, הם דומים לאטומים בגביש סלעי, ​​מסודרים בדגם סריג סימטרי. אם האנשים מתפזרים באקראי כדי לבצע את התרגילים שלהם, הם דומים לאטומים במוצק אמורפי, כמו זכוכית. עכשיו דמיינו קהל של אנשים היוצאים מפינת חדר כושר לאחר משחק, והם זורמים תוך נגיעה זה בזה במהלך היציאה. התנהגותם דומה התנהגות של נוזל. כדי לדמיין גז, חשבו על כמה אנשים מכוסי עיניים המפוזרים על באולם התעמלות. רוב הזמן הם עשויים לנוע בקווים ישרים, אבל לפעמים אנשים מתנגשים או מסתובבים בכיוונים שונים. התנהגות זו דומה לתנועת מולקולות גז, הנעות במרחקים גדולים זו מזו (בהשוואה לגודל של מולקולה בודדת), אך מדי פעם פוגעת מולקולה אחת במולקולה אחרת.

כל צורות החומר בכדור הארץ – מוצק, נוזלי וגז – קרירים יותר מהחומר בשמש או ברוב הכוכבים. אם נוסיף לחמם  גז תגדל מהירות התנועה של האטומים. הם יפגעו חזק יותר ויותר זה בזה. בטמפרטורה של כמה אלפי קלווין, אטומים פגעו זה בזה בכוח כה רב עד שהאלקטרונים הקשרים לאטומים המרכיבים אותם משתחררים מסלולם סביב הגרעין. על פני השטח של השמש, למשל  הטמפרטורה מגיעה בקרוב ל-   60000K. גרעיני מימן רבים בטמפרטורה זו איבדו את האלקטרונים שלהם, והם נעים במהירויות של כ- 10 ק"מ לשנייה או פי 20 מהר יותר מאשר את מולקולות האוויר שאנו נושמים. חומר במצב גזי שבו האלקטרונים עוזבים את גרעין האטום הינו גז מיונן, או פלזמה.

בליבות כוכבים החומר במצב גזי מחומם לטמפרטורות גבוהות מאוד. בניסוי המפורסם של ארנסט רתרפורד, חלקיקי אלפא, הטעונים במטען חיובי, נרתעו מגרעיני זהב הטעונים חיובית, בשל הכוח החשמלי. הכוח החשמלי מונע, בדרך כלל, מגרעיני האטום להגיע קרוב מדי זה לזה. אבל בשל הלחץ העצום והטמפרטורות הגבוהות בליבת הכוכב, גרעיני אטומיים יכולים להתנגש זה בזה בעוצמה רבה ולהיצמד אחד לשני בהשפעת הכוח הגרעיני החזק. גז בטמפרטורה של מיליוני קלווין יכול לשנות את מבנה היסודות מהם הוא מורכב, ולהפיק כמויות אנרגיה אדירות. זהו מקור האור של השמש.

Author: Chris Impey

« הקודם
הבא »
חיפוש בספר לימוד:
תוכן העניינים:
פרק א' - כיצד פועל המדע?
  • 1.1 השיטה המדעית
  • 1.2 ראיות
  • 1.3 מדידות
  • 1.4  אומדן
  • 1.5  ממדים
  • 1.6 תצפיות ואי-וודאות
  • 1.7 סימון מדעי
  • 1.8 בדיקת השערות
  • 1.9 חקר מקרה – חיים על מאדים
  • 1.10 תיאוריות מדעיות
  • 1.11 מערכות ידע מדעיות
  • 1.12 מחקר מדעי מודרני
  • 1.13 האסטרונומיה כמדע
פרק ב' - אסטרונומיה תצפיתית
  • 2.1 שמי הלילה
  • 2.2 תנועות בשמים
  • 2.3 ניווט
  • 2.4 קבוצות כוכבים ועונות השנה
  • 2.5 עונות השנה
  • 2.6 בהירות כוכבים
  • 2.7 גודל קווי וגודל זוויתי
  • 2.8 מופעי ירח
  • 2.9 ליקויים
  • 2.10 זוהר הקוטב
  • 2.11 לוחות זמנים
  • 2.12 זמני השמש
  • 2.13 תקציר תולדות האסטרונומיה
  • 2.14 האסטרונומיה היוונית
  • 2.15 אסטרונומיה גיאוצנטרית
  • 2.16 יממה כוכבית ויממה שמשית
  • 2.17 חודש שמשי וחודש כוכבי
פרק ג' - המהפכה הקופרניקנית
  • 3.1 תלמי והמודל הגיאוצנטרי
  • 3.2 הרנסנס
  • 3.3 קופרניקוס והמודל ההליוצנטרי
  • 3.4 טיכו ברהיי
  • 3.5 יוהנס קפלר
  • 3.6 מסלולים אליפטיים
  • 3.7 חוקי קפלר
  • 3.8 גלילאו גליליי
  • 3.9 משפט גלילאו
  • 3.10 אייזק ניוטון
  • 3.11 חוק הכבידה העולמי של ניוטון
  • 3.12 תהליכים מחזוריים
  • 3.13 ריבוי עולמות
  • 3.14 הולדת המדע
  • 3.15 הסדר במערכת השמש
  • 3.16 קנה-המידה של מערכת השמש
  • 3.17 מסע בחלל
  • 3.18 קיצור תולדות מסעי החלל
  • 3.19 הנחיתה על הירח
  • 3.20 תחנת חלל בינלאומית
  • 3.21 משימות חלל מאוישות מול רובוטיות
  • 3.22 טיסות חלל מסחריות
  • 3.23 עתיד מחקר החלל
פרק ד' - אנרגיה וחומר ביקום
  • 4.1 חומר ואנרגיה
  • 4.2 ראת'רפורד ומבנה האטום
  • 4.3 פיזיקה יוונית
  • 4.4 דלטון והאטומים
  • 4.5 הטבלה המחזורית
  • 4.6 מבנה האטום
  • 4.7 אנרגיה
  • 4.8 חום וטמפרטורה
  • 4.9 אנרגיה קינטית ואנרגיה פוטנציאלית
  • 4.10 שימור אנרגיה
  • 4.11 מהירות חלקיקי גז
  • 4.12 מצבי צבירה בחומר
  • 4.13 תרמודינמיקה
  • 4.14 אנטרופיה
  • 4.15 חוקי התרמודינמיקה
  • 4.16 קרינת חום
  • 4.17 חוק ווין
  • 4.18 קרינה מפלנטות וכוכבים
  • 4.19 חום פנימי בפלנטות וכוכבים
פרק ה' - מערכת ארץ-ירח
  • 5.1 הארץ והירח
  • 5.2 ניסיונות בהערכת גיל הארץ
  • 5.3 התקררות כדור הארץ
  • 5.4 תיארוך רדיואקטיבי
  • 5.5 קביעת גיל הירח והארץ
  • 5.6 חום פנימי ופעילות גיאולוגית
  • 5.7 מבנה פנימי של הארץ והירח
  • 5.8 סוגי סלעים
  • 5.9 שכבות בארץ ובירח
  • 5.10 מים בכדור הארץ
  • 5.11 כדור הארץ המשתנה
  • 5.12 תנועת הלוחות
  • 5.13 הרי געש
  • 5.14 תהליכים גיאולוגיים
  • 5.15 מכתשי פגיעה
  • 5.16 זמן גיאולוגי
  • 5.17 הכחדות המוניות
  • 5.18 אבולוציה וסביבה קוסמית
פרק ו' - פלנטות ארציות
  • 6.1 מדוע ללמוד על פלנטות?
  • 6.2 הפלנטות
  • 6.3 פלנטות ארציות
  • 6.4 מרקיורי
  • 6.5 נוגה
  • 6.6 תופעות געשיות בנוגה
  • 6.7 אפקט חממה בנוגה
  • 6.8 פעילות טקטונית בנוגה
  • 6.9 אגדות מאדים
  • 6.10 מחקרים מוקדמים של מאדים
  • 6.11 מחקר מאדים
  • 6.12 הגיאולוגיה של מאדים
  • 6.13 מבט מקרוב על קרקע מאדים
  • 6.14 ירחי מאדים
  • 6.15 מסלולי מרקיורי
פרק ז' - פלנטות ענקיות וירחיהן
  • 7.1 פלנטות גז ענקיות
  • 7.2 האטמוספירות בענקיות הגז
  • 7.3 עננים בענקיות הגז
  • 7.4 המבנה הפנימי של ענקיות הגז
  • 7.5 קרינת חום מענקיות הגז
  • 7.6 היש חיים בענקיות הגז?
  • 7.7 מדוע הן כה ענקיות?
  • 7.8 חוקי הגזים
  • 7.9 הטבעות של ענקיות הגז
  • 7.10 כיצד נוצרו הטבעות?
  • 7.11 גבול רוש
  • 7.12 ירחים של הפלנטות הגדולות
  • 7.13 משימת וויאג'ר
  • 7.14 פלנטת צדק
  • 7.15 הירחים הגליליאניים
  • 7.16 תופעות געשיות באיו
  • 7.17 שבתאי
  • 7.18 מסע קאסיני לשבתאי
  • 7.19 טיטאן – גדול ירחי שבתאי
  • 7.20 גילוי אורנוס ונפטון
  • 7.21 אורנוס
  • 7.22 נפטון
פרק ח' - גופים במרחב הפלנטרי
  • 8.1 גופים במרחב הפלנטרי
  • 8.2 שביטים
  • 8.3 מבנה גרעין השביט
  • 8.4 הכימיה של השביט
  • 8.5 ענן אורט וחגורת קוויפר
  • 8.6 חגורת קוויפר
  • 8.7 מסלולי השביטים
  • 8.8 מהלך חיי שביט
  • 8.9 גופים מחוץ למערכת השמש
  • 8.10 מטאורים
  • 8.11 אסטרואידים
  • 8.12 צורת האסטרואידים
  • 8.13 אירוע טונגוסקה
  • 8.14 איומים מהחלל
  • 8.15 פגיעות בצדק
  • 8.16 הזדמנויות בחלל הבין-פלנטרי
פרק ט' - כיצד נוצרה המערכת הפלנטרית?
  • 9.1 כיצד נוצרה מערכת השמש?
  • 9.2 ראשית מערכת השמש
  • 9.3 שימור תנע זוויתי
  • 9.4 תנע זוויתי בענן קורס
  • 9.5 התכווצות הלמהולץ
  • 9.6 ויקטור ספרונוב ויצירת הפלנטות
  • 9.7 קריסת ערפילית כוכבנית
  • 9.8 מפלנטסימלים לפלנטות
  • 9.9 התפתחות גופים במערכת השמש
  • 9.10 הפרדה פלנטרית – דִּיפֶרֶנְצְיַאצְיָה
  • 9.11 כיצד נוצרה מערכת השמש?
  • 9.12 מעבר מגרגרים לפלנטות
  • 9.13 התלכדות והתפרקות של גופים במערכת השמש
  • 9.14 שדות מגנטיים בפלנטות
פרק י' - גלוי קרינה מהחלל
  • 10.1 תצפיות ביקום
  • 10.2 הקרינה והיקום
  • 10.3 טבע האור
  • 10.4 הספקטרום האלקטרומגנטי
  • 10.5 תכונות הגלים
  • 10.6 גלים וחלקיקים
  • 10.7 כיצד נעה הקרינה
  • 10.8 התכונות של הקרינה אלקטרומגנטית
  • 10.9 אפקט דופלר
  • 10.10 קרינה בלתי נראית
  • 10.11 קווים ספקטרליים
  • 10.12 קווים ופסי פליטה
  • 10.13 ספקטרום בליעה ופליטה
  • 10.14 חוקי קירכהוף
  • 10.15 חישה ופיענוח של מידע אסטרונומי
  • 10.16 הטלסקופ
  • 10.17 הטלסקופ האופטי
  • 10.18 גלאים אסטרונומיים
  • 10.19 אופטיקה מסתגלת
פרק י"א - השמש - הכוכב שלנו
  • 11.1 השמש
  • 11.2 הכוכב הקרוב ביותר
  • 11.3 תכונותיה של השמש
  • 11.4 קלווין וגיל השמש
  • 11.5 הרכב השמש
  • 11.6 אנרגיה גרעינית
  • 11.7 המרת מסה לאנרגיה
  • 11.8 דוגמאות להמרת מסה-אנרגיה
  • 11.9 אנרגיה מביקוע גרעיני
  • 11.10 אנרגיה מהיתוך גרעיני
  • 11.11 תהליכים גרעיניים בשמש
  • 11.12 פנים השמש
  • 11.13 זרימת האנרגיה בשמש
  • 11.14 הכרומוספירה והקורונה
  • 11.15 נייטרינים מהשמש
  • 11.16 תנודות השמש
  • 11.17 כתמי השמש
פרק י"ב - תכונותיהם של כוכבים
  • 12.1 כוכבים
  • 12.2 שמות כוכבים
  • 12.3 תכונות כוכבים
  • 12.4 המרחק לכוכבים
  • 12.5 בהירות נראית או גודל נראה
  • 12.6 בהירות מוחלטת או גודל מוחלט
  • 12.7 מדידת המרחק לכוכבים
  • 12.8 מדידת פארלקסה
  • 12.9 ספקטרום הכוכבים
  • 12.10 מיון ספקטראלי
  • 12.11 טמפרטורה ומיון ספקטראלי
  • 12.12 תנועת כוכבים בחלל
  • 12.13 נגיהות
  • 12.14 מדידת רדיוס כוכב
  • 12.15 חוק סטפאן-בולצמן
  • 12.16 מסת כוכבים
פרק י"ג - הולדתם ומותם של כוכבים
  • 13.1 הולדתו ומותו של כוכב
  • 13.2 הבנת מהלך חיי כוכבים
  • 13.3 כמות היסודות ביקום
  • 13.4 היווצרות כוכבים
  • 13.5 עננים מולקולריים
  • 13.6 כוכבים צעירים
  • 13.7 כוכבי T טאורי
  • 13.8 גבולות מסת הכוכבים
  • 13.9 ננסים חומים
  • 13.10 צבירי כוכבים צעירים
  • 13.11 קדירת היסודות
  • 13.12 כוכבי הסדרה הראשית
  • 13.13 תגובות גרעיניות בסדרה הראשית
  • 13.14 משך החיים בסדרה הראשית
  • 13.15 התפתחות כוכבים
  • 13.16 ענקים אדומים
  • 13.17 כוכבים בענף האופקי ובענף האסימפטוטי
  • 13.18 כוכבים משתנים
  • 13.19 מחזורים בחייהם ומותם של כוכבים
  • 13.20 כוכבים מגנטיים
  • 13.21 אובדן מסה בכוכבים
  • 13.22 ננסים לבנים
  • 13.23 סופרנובה
  • 13.24 לצפות במותו של כוכב
  • 13.25 כוכבי ניוטרונים ופולסרים
  • 13.26 תורת היחסות הפרטית
  • 13.27 תורת היחסות הכללית
  • 13.28 חורים שחורים
  • 13.29 תכונותיהם של חורים שחורים
  • 13.30 ערפיליות פלנטריות
פרק י"ד - שביל החלב
  • 14.1 פיזור כוכבים בחלל
  • 14.2 כוכבים שותפים
  • 14.3 כוכבים כפולים
  • 14.4 מערכות מרובות כוכבים
  • 14.5 העברת מסה במערכת כפולה
  • 14.6 מערכות כפולות ומסת כוכבים
  • 14.7 נובה וסופרנובה
  • 14.8 מערכות בינאריות אקסוטיות
  • 14.9 היווצרות מערכת רב-כוכבית
  • 14.10 סביבות הכוכבים
  • 14.11 התווך הבין כוכבי
  • 14.12. השפעת תווך בין-כוכבי על אור כוכבים
פרק ט"ו - גלקסיות
  • 15.1 גלקסיית שביל החלב
  • 15.2 מיפוי דסקת הגלקסיה
  • 15.3 מבנים הספירליים בגלקסיות
  • 15.4 המסה של גלקסיית שביל-החלב
  • 15.5 חומר אפל בגלקסיית שביל-החלב
  • 15.6 מסת הגלקסיה
  • 15.7 מרכז הגלקסיה
  • 15.8 אוכלוסיות כוכבים
  • 15.9 יצירת גלקסית שביל-החלב
  • 15.10 גלקסיות
  • 15.11 שאפלי, קורטיס והאבל
  • 15.12 מדידת מרחקים באמצעות קפאידים
פרק ט"ז - היקום המתפשט
  • 16.1 הסחה לאדום של גלקסיות
  • 16.2 היקום המתפשט
  • 16.3 היסט קוסמולוגי לאדום
  • 16.4 יחס האבל
  • 16.5 היחס בין היסט לאדום ומרחק
  • 16.6 סמנים להערכת מרחקי גלקסיות
  • 16.7 הגודל והגיל של היקום
  • 16.8 קבוע האבל
  • 16.9 מבנה היקום בקנה-מידה גדול
  • 16.10 חומר אפל בקנה-מידה גדול
  • 16.11 הגלקסיות הרחוקות ביותר
  • 16.12 גלקסיות פעילות
  • 16.13 גילוי קוואזרים
  • 16.14 קוואזרים
  • 16.15 חורים שחורים בגלקסיות קרובות
  • 16.16 קוואזרים כחיישני היקום
  • 16.17 מקור האנרגיה של קוואזרים
  • 16.18 יצירת כוכבים וההיסטוריה של היקום
פרק י"ז - קוסמולוגיה
  • 17.1 קוסמולוגיה
  • 17.2 קוסמולוגיות קודמות
  • 17.3 קוסמולוגיה ייחסותית
  • 17.4 מודל המפץ הגדול
  • 17.5 העקרון הקוסמולוגי
  • 17.6 התפשטות היקום
  • 17.7 יצירת יסודות קוסמית
  • 17.8 קרינת רקע קוסמית
  • 17.9 גילוי קרינת רקע קוסמית
  • 17.10 מדידת עקמומיות היקום
  • 17.11 התפתחות היקום
  • 17.12 התפתחות מבנה היקום
פרק י"ח - החיים בכדור הארץ
  • 18.1 טבע החיים
  • 18.2 הכימיה של החיים
  • 18.3 מולקולות החיים
  • 18.4 ראשית החיים בכדור הארץ
  • 18.5 ראשיתן של מולקולות מורכבות
  • 18.6 הניסוי של מילר-יורי
  • 18.7 טרום עידן ה- RNA
  • 18.8 עולם ה- RNA
  • 18.9 ממולקולות לתאים
  • 18.10 חילוף חומרים
  • 18.11 אורגניזמים אנאירוביים
  • 18.12 אקסטרמופילים
  • 18.13 פסיכרופילים
  • 18.14 חשיבות המים לחיים
  • 18.15 דנ"א ותורשה
  • 18.16 ברירה טבעית
  • 18.17 השערת גאיה
  • 18.18 החיים ואירועים קוסמיים
פרק י"ט - חיים ביקום
  • 19.1 החיים ביקום
  • 19.2 אסטרו-ביולוגיה
  • 19.3 החיים מחוץ לכדור הארץ
  • 19.4 אתרים אפשריים לקיום חיים
  • 19.5 מולקולות מורכבות בחלל
  • 19.6 חיים במערכת השמש
  • 19.7 השערת כדור הארץ הנדיר
  • 19.8 האם אנחנו לבד?
  • 19.9 היסטוריה של חיפוש חוצנים
  • 19.10 איפה הם?
  • 19.11 הדרך הטובה ביותר לתקשר
כל הזכויות שמורות ל-שיר-שירותי ידע ברשת, אשדות יעקב איחוד © 2022
Design by Visuali

תפריט נגישות

  • מופעל ב favoriteאהבה ע״י עמית מורנו
גלילה לראש העמוד